OH radical-initiated chemistry of isoprene in aqueous media. Atmospheric implications.
نویسندگان
چکیده
The fate of isoprene (2-methyl-1,3-butadiene, ISO) emissions into the atmosphere is not fully understood. Increasing awareness that ISO is only partially processed in the gas-phase has turned attention to its reactive uptake by fog, cloud, and aerosol droplets. A hydrophobic gas, ISO would preferentially partition to the surface rather than the bulk of aqueous media. Such media normally contain dissolved O2 and water-soluble unsaturated organics and support •OH generation rates (from the solar photolysis of dissolved H2O2) that are several orders of magnitude larger than in the gas-phase. Thus, ISO should be converted therein to heavier products rather than into the C4-C5 volatile compounds produced in the gas-phase. Here we substantiate such a scenario by reporting that the λ > 305 nm photolysis of H2O2 in dilute aqueous ISO solutions yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. A minimum of seven C10H15OH isomers are resolved by reverse-phase high-performance liquid chromatography and detected as MH(+) (m/z = 153) and MH(+)-18 (m/z = 135) signals by electrospray ionization mass spectrometry. Our findings are consistent with the addition of •OH to ISO, followed by HO-ISO• reactions with ISO in competition with O2, leading to second generation HO(ISO)2• radicals that terminate as C10H15OH via β-H abstraction by O2. We show that a significant fraction of gas-phase olefins should be converted into less volatile species via this process on wet airborne particles.
منابع مشابه
Improved simulation of isoprene oxidation chemistry
The GABRIEL airborne field measurement campaign, conducted over the Guyanas in October 2005, produced measurements of hydroxyl radical (OH) concentration which are significantly higher than can be simulated using current generation models of atmospheric chemistry. Based on the hypothesis that this " missing OH " is due to an 5 as-yet undiscovered mechanism for recycling OH during the oxidation ...
متن کاملIsoprene Peroxy Radical Dynamics.
Approximately 500 Tg of 2-methyl-1,3-butadiene (isoprene) is emitted by deciduous trees each year. Isoprene oxidation in the atmosphere is initiated primarily by addition of hydroxyl radicals (OH) to C4 or C1 in a ratio 0.57 ± 0.03 (1σ) to produce two sets of distinct allylic radicals. Oxygen (O2) adds to these allylic radicals either δ (Z or E depending on whether the allylic radical is cis or...
متن کاملQuantification of hydroxycarbonyls from OH-isoprene reactions.
Hydroxycarbonyls arising from OH-initiated reactions of isoprene have been quantified by the technique of a flow reactor coupled to proton-transfer reaction mass spectrometry (PTR-MS) detection. The yields of C5- and C4-hydroxycarbonyls are (19.3 +/- 6.1)% and (3.3 +/- 1.6)%, respectively, measured at a flow tube pressure of about 100 Torr and at a temperature of 298 +/- 2 K. A yield of (8.4 +/...
متن کاملIsomer-selective study of the OH-initiated oxidation of isoprene in the presence of O(2) and NO: 2. the major OH addition channel.
We report the first isomeric-selective study of the dominant isomeric pathway in the OH-initiated oxidation of isoprene in the presence of O2 and NO using the laser photolysis-laser induced fluorescence (LP-LIF) technique. The photolysis of monodeuterated/nondeuterated 2-iodo-2-methylbut-3-en-1-ol results exclusively in the dominant OH-isoprene addition product, providing important insight into...
متن کاملOn rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy nitrates.
Eight distinct hydroxy nitrates are stable products of the first step in the atmospheric oxidation of isoprene by OH. The subsequent chemical fate of these molecules affects global and regional production of ozone and aerosol as well as the location of nitrogen deposition. We synthesized and purified 3 of the 8 isoprene hydroxy nitrate isomers: (E/Z)-2-methyl-4-nitrooxybut-2-ene-1-ol and 3-meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 117 24 شماره
صفحات -
تاریخ انتشار 2013